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Abstract

It is shown that equations of motion for a turbulent
flow can be derivéd which are consistent with Heisenberg's
statistical theory of turbulence. These equations are
linear intergro-differential equations expressing the non-
local interaction of eddies with different wave numbers
on the basis of Heisenberg's statistical theory.

The nonlocal terms‘in these equations of motions for
turbulent flow have to be determined from the energy spectrum
of the turbulent motion. Since the energy spectrum is
known only after the turbulent flow has been determined,
one has to solve the nonlocal linear equations of motions
self-consistentiy with the nonlinear intergro-differential
equation for the energy spectrum.

In contrast to the Navier-Stokes equations, the non-
linearity occurs here only in the equation for the energy
spectrum and not in the equation of motion itself. This

fact faciiitates the integration of these equations greatly.




Our analysis is extended to include turbulent con-
vection. In the spirit of Heisenberg's hypothesis,
equations of motion and energy equations are formulated
which are consistent with the equations of the energy
spectrum for free turbulent convection derived by
Ledeoux, Schwarzschild and Spiegel. From these equations,
dispersion relations and growth rates are obtained
which take into account the phenomena of turbulent
mixing. With this method, one can treat turbulent con-
vection problems which arise in stellar and planetary
atmospheres where the classical solution of laminar

free convection cannot be applied.



1. Turbulent Fluid Motion and the Hypothesis of Isotropic

Homogeneous Turbulence.

We will assume thgt by some degree of appfoximation the
motion of a turbulent fluid can be thought of as being a small
scale turbulent velocity superimposed on the average fluid
velocity. The "eddies" of the turbulent velocity field will
interact and thus give rise to an additional frictional force
which might be thought of as being caused by an eddy viscosity.

This picture is in someway analogous to the kinetic theory
description of a gas or fluid. There also the fluid motion may be
described by a small‘scale molecular motion superimposed onto an
average fluid motion. The average velocity which defines a
convenient frame of reference in which the fluid is at rest, is
obtained by taking the velocity moment of the molecular
velocity distribution function. The molecular velocity, super-
imposed on this average velocity, is then determined by the
distribution function in this frame of reference.

As an example, one may consider the case of uniform fluid
motion. If the fluid is in thermodynamic equilibrium, the
distribution function in the frame at rest will be a displaced
Maxwellian. Taking the velocity moment of this distribution
function, oné obtains the average fluid motion. A Galilei
transformation to a system moving with this average velocity

will then define the system at



rest with the fluid. The distribution function in
this new system is a homogeneous Maxwellian.

v In fluid dynamics, the assumption of a homogeneoud

Maxwellian is only valide in very Spécial cases, uniform
motion being a trivial one. It will not be valid, for
instance, in any flow with shear, where momentum is
exchanged by particle motion between different fluid
layers. As a result the distribution function changes
from a Maxwellian to some nonequilibrium distribution
function. However, the relaxation time, being essentially
the particle collision time, is generally so short that
a deviation of the distribution function from a Maxwellian
will be very small. Also, near a boundary the distribution
function will be affected by collisions with the wall.
But as long as the mean free path is small compared with
the characteristic distance determined by the spatial
separation of the boundaries, the deviation of the dis-~
tribution function from a Maxwellian is always negligible.
The assumption of a Maxwellian permits one to obtain
simple expressions for the viscous friction force in the
Navier-Stokes equation.

In thé problem of turbulent motion, it is tempting
to ask whether a similar approximation cannot be made
there too, by looking at the analogy between colliding
molecules in kinetic theory and interacting eddies in
turbulent mixing. Because of the analogy between the

two different processes in kinetic theory, the assumption
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of an istropic Maxwellian velocity distribution can only
correspond to a turbulent motion with an isotropic
spectrum of turbulence. If we make this éssumption the
turbulent fluid motion may be déscribed by an average
velocity over which a small scale isotropic turbulent
motion is superimposed.

The validity of an isotropic Maxwellian velocity
distribution in kinetic theory resulted from a mean free
path much smaller than the characteristic length of the
fluid. A small mean free path implies many collisions
by which the fluid relaxes rapidly into a Maxwellian
distribution, and the assumption of a small mean free
path is usually satisfied for most problems of interest.

From the analogy between colliding particles and
interacting eddies it follows that the assumption of a
small mean free path in kinetic theory must correspond
in turbulence to the assumption of a small "mean free
path" for a turbulent eddy, small if compared with the
dimensions of the system, in which the turbulent motion
takes place. However, the assumption of a small "mean
free path" for turbulent eddies cannot be satisfied as
well as the corresponding assumption of a small mean free
path in kinetic theory. The reason for this can be seen
as follows: Turbulent motion can be thought of as
consisting of eddies of different sizes described by a
spectrum in wave number space. According to Heisenberg's

theory the "mean free path" of an eddy with a wave number



k is of the order l/k. If the characteristic dimension
of the system is given by L, then the assumption of a
small "mean free path" will break down fof eddies with a
size comparéble to or larger than L,'or for wave numbers
smaller than k = ké = 1/1L, where wave number kc is of the
same order of magnitude as the cutoff wave number in
Heisenberg's statistical theory of homogeneous isotropic

turbulence.

2. Equations of Motions and Energy Spectrum of Turbulence.

We are considering an incompressible fluid with the

equation of motion

+ (veV)yv = -%Vp + UVZX ' (2.1)

ol

and the equation of continuity

iiv v = 0 . (2.2)

In equation (2.1) the term (v°V)Vv represents a nonlinear
interaction and it is theis interaction which leads to
turbulence.
(1)
In Heisenberg's statistical theory . the behavior
of istropic homogeneous turbulence is described by an
equation for the energy spectrum. Heisenberg's theory

was generalized by Chandrasekhar(z)

to include time
dependence. In this theory, the energy spectrum F(k,t)
of turbulent motion is given by the solution of an integro-

differential equation:
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k k'3 K |
_ | o
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k=(kx+ky+kz) .

|

1 In equation (2.3) the second term in the square bracket

is a function of the wave number k and may be considered
as a turbulent or eddy viscosity, which is the fundamental
assumption of Heisenberg's theory. The constant « is a
universai dimensionless constant of the order 1. Thus,

we define the eddy viscosity v (k) in wave number space by

3 . (2.4)

kO is the cutoff wave number which can be related to the
size of the largest possible eddy consistent with the fluid
boundaries.

To understand the physical meaning of Heisenberg's
theory, we have to derive an equation for the energy spectrum
from the equations of motion (2.1) assuming isotropic
homogeneous turbulence. For this we expand the velocity

and pressure fields in wave number space



vir,t) = ]2( vik,t)e = ' (2.5)
p(x,t) = ] p(k,t)e R L . (2.6)

The assumption of isotropy implies that we can average
the expressions for the energy spectrum over a spherical
surface in k - space. The energy spectrum F(f,t) is

then given by

v
§x

F(k,t) = k2 [<vlk,t)v*(k,t)>de . (2.7)

3

In equation (2.7) V is a normalization volume and the
brackets denote ensemble averages.

The equation for the energy spectrum is then ob-
tained by taking the Fourier transform of equation (2.1)
and multipling it by the complex conjugate transform of
the velocity v* (k,t), and in accordance with (2.7)
taking the average over a spherical surface in k - space.
We finally take into account the vanishing of pressure
velocity correlations in the case of isotropic turbulence (3)

and obtain

= 2vk?F - [ Q(k,k")ak’ . (2.8)

%o

[
ol

In equation (2.8) Q results from the nonlinear interaction



term and is trilinear in the Fourier transform of the
velocity field. By comparing equation (2.3) with equation
(2.8), it follows that Heisenberg's theory implies the

ad hoc assumption that

k @ ) '
[ak' QK k*)ck" = -2« ; Elk g k"f F(k') k' 2dk’. (2.9)

k. kll
ko o o

Althought is is not obvious how good this assumption
really is we can say that the overall agreement of
Heisenberg's theory with measured energy spectra supports
the hypothesis (2.9).

We are thérefore inclined to ask the following
questioﬁ: Waht kind of equation must replace (2.1)
in order that condition (2.9) is fulfilled exactly?
The answer to this question must lead to a set of
equations of motion consistent with Heisenberg's
statistical theory and which describe the motion of a
turbulent flow. |

To obtain the answer we proceed as follows:

I. We introduce an eddy viscosity in wave number
'space defined by Vs(k)’ This eddy viscosity is different

from the eddy viscosity (2.4) but related to it by

1
v (k) =
€ k°F (k)

QaIQc
~

k 5 .
[v(k) | P(k")k' dk'] . (2.10)

kO

II. With the eddy viscosity defined by equation (2.10) we

construct the function

K(I_I;l) = —Tz—)l—7—— ] \) (k)e b —dk - (2-11)
’ n



III. The ecuation of motion (2.1) is then replaced by the

following equation

- %VP ' vvz!-+7;;%§77 [x(z-z' D vPu(zar’ . (2.12)

Equation (2.12) will lead exactly to Heisenberg's expression
for the energy spectrum, which may easily be demonstrated. For

the proof we take the Fourier transform of equation (2.12):

av(k)

ot

= - il -lv 4 v e (2.13)

We multiply eqtation (2.13) with v*(k) and average according to
"(2.7). As before we take into account the vanishing of pressure-

velocity correlations and have

IF _ 2
- 55 = 2 (v + v (K)IKF . (2.14)

Integrating equation (2.14) from k'=kO to k'=k we obtain
equation (2.3). THis complete the proof.

By comparing equatioh (2.12) with equation (2.1),
one can see that the term (v°A)v has been replaced by a
nonlocal term. The nonlocality is a result of the wave-
number-depentend eddy viscosity. This behavior is not
surprising because the eddies have a finite size of the
order l/k and therefére their interaction with other eddies
must be nonlocal. Furthermore, in contrast to equation (2.1)
equation (2.12) is linear. However, the nonlinéarity
appears here in the equation for the energy spectrum,

the solution of which has to be known in order to
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construct the kernel function K(lx=1l) according to

equation (2.11). Since the equation for the energy

spectrum can Be only solved after the flow problem is
determined, or hés to solve the system of both equations
self-consistently. But the removal of the nonlineariﬁy

from the equations of motion is a great advantage over

the Navier Stokes equations. The linearity in the equations
of motions simplifies greatly the solution of the set

of equations describing the motion of turbulent flow.

This will be demonstrated for the important problem of

free turbulent convection treated below.
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3. Turbulent Convection.

The theory outlined in the preceding paragraph can be
easily generalized to include turbulent convection. This nay
be of significahce for the treatment of convection problems in
stellar and planetary atmospheres.
Heisenberg's theory ic¢ ulid only for fluid motions of
small Mach numbers. Therefore, in applying Heisenbera's theory to
convection problems we are restricted to the Boussinesg approximation(4)

with the following equations of motion

v 1_, 2
— . = e — '
5T + (v-V)v pr + vv°v + gaT e, ’ (3.1)
and the energyy equation
3T S SIS .
-a—g-— + ! vl = xV T + BY_ gz ’ (3.2)
to be supplemented by
div v = 0 . (3.3)
In the equations (3.1) - (3.2), T' and p' are the

perturbations of the temperature and pressure fields. a is
the thermal expansion coefficient, g = -VAT is the excess
of the temperature gfadient over the adiabatic temperature
gradient, and e, is a unit vector in the vertical direction. x is
the heat conduction coefficient.

To fina the implications of Heisenberg's concepf on the

set of equations (3.1) - (3.3) we again have to derive the

equations for the turbulent energy spectrum. There we need in
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addition to F(k,t) defined by (2.75 the following spectral

functions
Glk,t) = —Vo k% [ <T' (k,t)T'*(k,t) >dn ' (3.4)
87 :
Rk, t) = 5 —Vo k%« [{<v(k,£)T*' (k,t)> + <v*(k,t)T' (k,t)>}dn _ 13.5)

8z

By the same procedure as before we obtain from (3.1) and (3.2) the
_ / _

following equations for the'spectral functions

2

- 3% = 2vk°F - 2geH - [ o(k,k')ek'  , (3.6
- k
. |
- 32 = 2xk% - 280 - [ U(k,k!)dk’’ ) (3.7)
kO

In equation (3.7) U(k,k') is mixed trilinear in temperature and
velocity. This set of eéuations + in order to have a solution,
must be supplemented'by an additional relation between the
functions F,G and H. In the theory of Ledoux, Schwarzschild and
Spiegel(s) it is assumed that the velocity and temperature

fluctuations are in phase which is expressed by
H = V4FG . (3.8)

To formulate the equations for the spectral functions in
the spirit of heisenberg's eddy viscosity,hypothesis—it is
rather obvious that we have to make the same approximation for
Q(k,k;) as in (2.9). For the third term on the r.h.s. of
equation (3.7) hbwever, we have to make an additional

hypothesis not contained in Heisenberg's theory. By
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comparing equation (3.6) and (3.7) one may connect

the third term on the r.h.s. of (3.7) with the heat tranported by

eddies. It is thus tempting to put in analogy to equation (2.9)

kK = ' >
[ axY U(K,k")ak" = 2x(k)'{ cxk'Zak'  ,  (3.9)

k
ko o o

where x(k) is a wave-number-dependent eddy heat conduction coefficient.
The heat conduction coefficient for an ideal'gas is related

to the kinematic viscosity v by

X = v/y | ' (3.10)

where’y is the specific heat ratio.

Depending on the number of degrees of freedom of the

: gas molecules, which are in between 3 and 6, we have

4/3 <y< 5/3 . (3.11)

I1f the temperature and velocity fluctuations are in phase

as assumed by Leceoux, Schwarzschild and Spiegel a propor-

-tiocnality similar to (3.10) should also hold for the eddies

describing the turbulent velocity field, fthis implies

x (k) = av(k)
3/5 <a< 3/4 . (3.12)
We thus have
k b k 2
[ ak' [ U(k,k™dk" = 2av(k) [ G(k')k'“ak’'. (3.13)
k k k

o o : o



=14~

The r.h.s. of eq. (3.13) has the same property as U, that
is, it is bilinear in the temperature and linear in the velocity
fluctuation.

In analogy to (2.10) we introduce a second turbulent heat

conduction coefficient x(k) defineé

k

1 a 2
(k) = —5—— =% [x(k) [ G(k"k' dk']
Xe k%G (k) kg |
- =2 4 iv(k) Ik G(k')k'zdk'i '3.14
o .

Hence, we obtain for the spectral functions F,G and H the following

set of equations

F _ . 2, _ .
"3 2{v + ve(k)}k F 2gaH
G _ 2 | ‘
- 3E = 2{x + xe(k)}k G 2BH (3.15)
H = /%FG .

In stellar atmospheres the heat transport by radiation is much
larger than the heat transport by turbulence. For this reason,
the heat transpor£ by convection can be neglected as was done
in the theory of Ledoux, Schwarzschild and Spiegel. In their
treatment the secona equation (3.15) is approximated by

k%G = B | . (3.16)

or by eliminating G from (3.16) with the third eq. (3.15) we have

H o= ’Ei F ) (3.17)
: xk’
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Finally inserting expressien (3.17) into the first eguation of
(3.15) one obtains the equation by Ledoux, Schwarzschild and

Spiegel for the eneray spectrum of free turbulent convection.

Ae in the preceding chapter it is now easy to construct
equations of motions for turbulent convection which are
consistent with the equations for the spectral functions (3.15).

In analogy to (2.11), we introduce the function

K*(lzf) = ?%W’fxe(k)eiﬁ'-r-dg ,  (3.18)
Al

and replace (3.1) an¢ (3.2) by the following new set of

equations

v 2 1 2

3E =SP4 vy o+ 37T / K(|r-r'|]) viv(x")ér' + goT'e, , (3.19)
' (27) .

= ol 4 -—)1—372. [ k*(Jr-x'pvrr (x)ax' + syee, . (3.20)

: {27w)~

The first two eq. of (3.15) for the spectral functions F, G
and H follow from (3.19) and (3.20). The proof is straightforward

and similar to the derivation of equation (2.14) from (2.12).

4. Dispersion Relations and Growth Rates for Free Turbulent

Convection.

In the classical treatment of thermal convection, the egquations
(3.1) and (3.2) are linearized by omitting the nonlinear terms
(v+V)v and v+VT'. The resulting set of equations is then

Fourier - analyzed in space and time into the following principal



modes of convection (gy{u,v,w},_v velocity amplitude)

.kzkx : ,.nt
k2' cos(kxx)sin(kyy)co§(kzz)e P

k k -
v = +V —571 sin(k_x) cos (k_y) cos (k_z)e™t,
N x y z

k2+k2' » (4.1)
: X . . . nt :
w = +V-——§—z51n(k x)sin(k_y)sin(k_z)e ~,
K b y z

n+ vk 2 ) Rt

. . . .
T Ja 51n(kxx)51n(kyy)51n(kzz)e ’

+V

ntvk? Ky YNt

v o L "z . .
p' = -V % K s1n(kxx)51n(kyy)cos(kzz)e .

The grdwth rate n for these principal modes is determined

by the following characteristic equation or dispersion relation:

2 .2
k2 + k
n=->iX K21 s (1 - w4 908 X Yy¥% , (4.2)
o X x

where

po= Svx o __4Pr . (4.3)

(vix)2  (14Pr)?

Pr = v/x is the so-called Prandtl number.

The dispersion.eqwtion‘(4.2) has two solutions corresponding
to two possibie signst This means ea. (4.1) describes two modes,
stable and unstable. The Stable modes are interpreted physically
by falling currents, and the unstable modes by risiné turrents.
| In addition to the two modes given by equation (4.1) the

equations of mctions permit one more mode in which only
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horjizontal velocities occur. This modé is represented by

k
u = +Vv Excos(kxx)sin(kyy)cos(kzz)gnt,

: kx nt
v =<V E—sin(kxx)cos(kyy)cos(kzz)e ’

w=T'=P' =0, (4.4)

and the dispersion relation determining the growth rate

n =—vk? | . (4.5)

The solution given by: the classicai theory is only applicable
to laminar convection problems. However, since most convection
phenomena in atmospheres are turbulent, the classical theory
-breaks down. The turbulent equations of motion which have
been derived in the preceding chapter can be used to calculate
turbulent convection problems in an approximation consistent
with Heisenberg's theory.

In the turbulent\problem,jwe have to make a Fourier analysis
of equations (3.19) and (3.20) together with the supplementary
equation (3.3). The solution of the turbulent problem is théh
obtained as follows: We introduce a total viscosity v*(k) in

k space which is defined by.
vH(k) = v + v (k) ' (4.6)
and similarly a total heat conduction coefficient

x*(k) = x + x_(k) T (4.7)

With thesé wave numberfaependent coefficients, we obtain the
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following principal modes of turbulent conveétion

kzkx n*t
u= +V——7-cos(kxx)sin(kyy)cos(kzz)e ‘
kT . .

| k_k | |

v = +v-i7¥sin(kxx)cos(kyy)cos(kzz)en*t ,
ki+k2 aee

W = +v-;7—xsin(kxx)sin(kyy)sin(kzz)e , (4.8)

| - L2 -
T = +v9i3:5—sin(k x)sin(k_y)sin(k z)en*t.
9a x ) 4 z :

2 k,
Pt = -vERTKT 2oy (k x)sin(k y)cos(k e ",

where the»turbulent growth rate n* for the modes are given by

2 . gaf k:+E; 3
[l*(l-u*ﬂl*v*(k)x*(k) k6 ) ] ’ (4.9)

ar w VROV

with

Lr o= AVHOR) x* ()

2 . (4.10)
(v* (k) +x* (k)

Quite analogous to the laminar mode (4.4), there is an additional
mode involving horizontal velocities only and which in the

turbulent case is given by

k ‘ *
n*t
u = +VExcos(kxx)sin(kyy)cos(kzz)e o
n*t

k _
v -'—Vgisin(kxx)cos(kyy)cos(kzz)e .

w=T'=P' =0 | , (4.11)
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with the growth rate

n* = —v*(k)k2 . (4.12)
Eqg. (4.8) - (4.12) have the same character as the corresponding
laminar equations (4.1) - (4.5). The only difference between

both solutions, the laminar and the turbulent, is in the

replacement of the viscosity and heat conduction coefficients by their
total values involving the wave-number dependent eddy traﬂsport
coefficients as defined by eq. (4.6) and (4.7). The eddy

viscosity and eddy-heat coﬁduction coefficients have to be calculated
from (2.10) and (3.14) by using the expressions for the spectral
functions F and G. However, the form of the spectral functions

. is known only after the growth rates have been caiculated. From

this it follows that the éxpressions for the growth rates have

to be solved self-consistently with the equations (3.15) for the
Vspectral functions F, G and H. |

In the case of a steady state convection one has obviously

- JE(kE) _ opap(k)

3t ’ (4.13)
and
_ 3G(k,t) _
5t 2n*G (k) .

The equations for the spectral function thus take the final form

n*F = {v + ve(k)}kzF - goH
n*G = {x +-xe(k)}k2G - BH (4.14)

H = /&FG ‘ .



-20-

The equations (4.14) for the spectral functions have to be
solved simultaneously with the growth rate functions n* (k) given
by (4.9) - (4.12) which involves the knowledge of F and G
through ve(k) and xé(k). Soiutiqns of these equations
for the spectral functions making the approximation (3.16)
have been obtained by the Ledoux, Schwarzschild and Spiegel
in their paper which was quoted earlier. In their case, it
was demonstrated that.the Kolmogoro ff~law for the spectrél
function F(k) was valid over a large range of wave'lengthé.

For obtaining first abproximation results it may be therefore
tempting to calculate v_(k) and x_(k). fxom (2.10) and (3.14) by

5/3

assuming the validity of the Kolmogoroff k power law.

5. Conclusion

Equations of motion for turbulent flow have been derived
which are consistent with Heisenberg's statistical theory of
. turbulence in the smse that Heisenberg's equation for the
energy spectrum is an exact consequence of it. In contrast
to other phenomenological theories which make some a priori
assumption concerning eddy transport coefficients the theory
presented in this paper is nonlocal, and as a consequence
of the nonlogality the equétions are integro-differential

equations. The theory is extended to include turbulent convecticn,

The theory may be very useful to determine the character of
complicated convection problems in stellar or planetary
atmospheres which otherwise can be treated by numerical analysis

only under immense computational efforts.




(1)

(2)
(3)
(4)
(5)

-21-~

References

Heisenberg, W., (1948). 2Zs. f. Phys. 124, 628 and Proc.
Roy. Soc. London, A, 195, 402, (1948).

Chandrasekhar, S., (1949) Phys. Rev. 75, 896.
Hinze, T. O., Turbulence, (1959) McGraw-Hill, New York.
Spiegel, E. A. and Veronis, G. (1960), Ap. J., 131, 442,

Ledoux, P. Schwarzschild, M. and Spiegel, E. A. (1961)




